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I. INTRODUCTION

Laser systems generating ultrashort pulses[1–3] have a
number of important applications in optics and telecommu-
nications. The stability of the pulse generation from one
round trip to another is one of the important qualities of such
lasers. Any instability in the laser is considered to be detri-
mental for its use in applications. Indeed, if the characteris-
tics of the output pulse start to deviate from the average, its
use in an accurate technological device might stop its opera-
tion. The study of the instabilities becomes a crucial point
when the configuration of the laser is designed. On the other
hand, some instabilities lead to a regular change of the soli-
ton parameters. This happens when periodic pulsations ap-
pear in the temporal evolution of the pulse. The pulse evo-
lution with an additional periodicity can be stable itself. In
this case, the pulsations can be observed in the output as
periodic changes of the pulse shape and energy from one
round trip to another. Then further devices can be designed
based on these regular changes.

A laser cavity is a “cage” that forces pulses to evolve
periodically with a period equal to the round-trip time. This
is an internal periodicity and cannot be seen externally unless
we monitor the pulse shape at several points of the cavity.
When the pulse is monitored at a fixed point of the cavity, we
can only observe its “macroevolution” at time scales longer
than the round-trip time. It is usually assumed that a laser is
in a stable regime of operation when the pulse returns to
exactly the same profile after each round trip. This means
that no macroevolution is present. The pulse might acquire
an additional periodicity at some regimes determined by the
parameters of the system. One of the transitions to periodic
pulsations of a soliton is known as period doubling(tripling,
etc.). Period doubling bifurcations have been found experi-
mentally in various pulse generating laser systems. These
include femtosecond solid-state lasers[4], fiber lasers[5–7],
additive pulse mode-locked lasers[8], and nonlinear ring
resonators[9].

Pulsating soliton solutions for the parameter averaged
model of a laser have been studied in Ref.[10]. This model
is based on the complex Ginzburg-Landau equation(CGLE)
with constant parameters. It does not take into account the
variation of the parameters in the cavity and the periods of
the pulsating solutions in this model do not have a direct
relation to the cavity length.

In the present work, we incorporated explicitly the cavity
periodicity into the model. We have found that even in this
case the pulse can acquire a periodic evolution that is not
related to the round-trip time and can consist of many round
trips. This “macroperiodicity” can exist independently or can
be combined with other periodicities such as period dou-
bling, tripling, etc. In the latter case the pulsations become
quasiperiodic with two and more frequencies involved in this
process. The frequencies can be commensurate or noncom-
mensurate providing a rich variety of pulse outputs from the
fiber laser.

II. THE MODEL

We model the fiber laser using the cubic-quintic complex
Ginzburg-Landau equation with parameter management:

icz +
D

2
ctt + ucu2c + nucu4c = idc + ieucu2c + ibctt + imucu4c

s1d

where z is the distance that the pulse travels in the cavity
(normalized to the cavity length), t is the retarded time,c is
the normalized envelope of the field,D is the group velocity
dispersion coefficient,d is the linear gain-loss coefficient,
ibctt accounts for spectral filteringsb.0d, eucu2c represents
the nonlinear gain which arises from saturable absorption,
the term withm represents, if negative, the saturation of the
nonlinear gain, while the one withn corresponds, also if
negative, to the saturation of the nonlinear refractive index.
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The laser cavity consists of several pieces of fiber, con-
necting elements and a mode-locking device. The properties
of the media where the pulse propagates vary with the dis-
tance. Hence, the coefficients in Eq.(1) must be periodic
functions of the distancez. Our aim is to show the existence
of quasiperiodic limit cycles in the simplest model. Hence,
we take the coefficients in Eq.(1) as periodic stepwise func-
tions of z.

This technique for modeling the fiber laser can be called
“parameter management.” The term comes from the theory
of “dispersion managed solitons”[11,12] which uses the
nonlinear Schrödinger equation(NLSE) with stepwise coef-
ficient in front of the second order derivative term. The pe-
riodic change of the group velocity dispersion induces evo-
lution of the soliton profile that is usually chaotic but may
become periodic provided the initial condition is chosen in a
special way.

We use a similar approach for our laser system but instead
of the nonlinear Schrödinger equation we use the cubic-
quintic Ginburg-Landau equation with coefficients that are
all periodic stepwise functions ofz. Each period in this
model naturally describes one round trip of the optical pulse.
In contrast to the “dispersion managing” of the NLSE, the
pulse evolution in our model does not depend generally on
the initial conditions after a certain number of round trips. In
the majority of the cases we use a sech-type profile to start
the simulations with a single pulse. The pulse evolves into
the solution provided it has the amplitude above a certain
threshold given by the parameters of the system. If the am-
plitude of the initial condition is below this threshold, it de-
cays and quickly vanishes.

The model is illustrated in Fig.1. The section of the er-
bium doped fiber together with the passive mode-locking
element is modeled by the full CGLE equation where all the
equation parameters are different from zero(see the left hand
side box of this figure). The dispersion in this section of the
cavity is taken to be normalsD,0d and the length of the
section isLD. The single mode fiber with anomalous disper-

sion sD=d.0d is modeled by the same equation with only
the dispersive term taken into account(the right hand side
box of this figure). The length of this fiber is denoted asLd.
The equation in this part is linear and therefore the only
relevant parameter is the productsdLdd. The pulse profile is
monitored every round trip at the end of this section unless
specified otherwise.

As happens in dissipative systems, the solution does not
depend generally on the initial condition(i.e., input pulse)
after the pulse has propagated several round trips. In other
words, any input pulse converges to a fixed stable profile or
to a limit cycle quickly after the laser is “switched on.” This
happens for a certain range of values of the equation param-
eters for which the limit cycle is stable. Only these cases are
of interest in our problem as well as for practical purposes.
Only in a few cases, when bistability(or multistability) is
present, the initial condition is important. The value of the
parameters of the system determine the period of the pulsa-
tions. In particular, the period can be equal to two, three, etc.,
round trips rather than one. These phenomena are known as
period doubling, tripling, etc., in the existing literature[5–8].
We have found pulsating behaviors with almost any integer
numberN of round trips as period. This observation requires
a careful search for the proper values of the system param-
eters. Each additional frequency in the pulsations appears at
some fixed values(bifurcation point) of the system param-
eters that we vary during simulations.

The model that we use is an approximation like any other.
However, it takes into account the most important feature,
namely, the round-trip periodicity of the effects suffered by
the pulse during its propagation inside the laser cavity. As a
result, it describes the soliton pulsation phenomena observed
in experiments more accurately. As an alternative, we could
use a lumped model in which certain devices, such as a mode
locker or other, are introduced at a point rather than in an
interval. The results we obtain will qualitatively be similar as
soon as we take into account the round-trip periodicity ex-
plicitly in the model.

III. EXPERIMENTAL SETUP

We observed experimentally several of the simulated os-
cillatory behaviors. The experimental setup consists of a
dispersion-managed mode-locked fiber ring laser similar to
those used in Refs. 13 and 14. The fiber laser, which emits

FIG. 1. Laser model used in the numerical simulations.

FIG. 2. Experimental setup.
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ultrashort pulses at a wavelength of around 1.5µm, is
sketched in Fig. 2. The gain is provided by a 1.9-m-long,
1400-ppm erbium-doped fiber(EDF) that features normal
chromatic dispersionfD=−40 sps/nmd /kmg. The pumping
source consists of four wavelength-multiplexed laser diodes
around 980 nm, providing a coupled power of up to 350 mW.
The path-averaged cavity dispersion is adjusted with the use
of an appropriate length of a SMF-28 fiber that has anoma-
lous dispersion fD= +16.5sps/nmd /kmg. A 50-cm-long
open air section is used to insert polarization components.
Due to the nonlinear polarization evolution that takes place
along with propagation in the fibers, the transmission
through the polarizerP1 is intensity dependent, and an ap-
propriate adjustment of the preceding wave plates triggers
the mode-locked laser operation. A polarization-insensitive
optical isolator wavelength-division-multiplexed coupler and
optical isolator(WDM-IS) ensures unidirectional lasing.

Two other optional outputs are implemented in the cavity,
and may be used according to which type of experiment is
performed. First, a second polarizersP2d, preceded by a half-
wave plate, provides a convenient variable output coupler.
We can use the half-wave plate to continuously tune the
amount of cavity losses in a given range, so that oscillations
can manifest accordingly. Second, a 10% fiber output coupler
is inserted inside the cavity in order to splice a small length
of dispersion-compensation fiber(DCF). This gives a conve-

nient way to compress the chirped pulses that propagate in
the cavity. Recording the optical autocorrelation from this
fiber output is used to distinguish the doublet and triplet
multisoliton complexes when the pulses are very close to
each other. In the present work, the path-averaged dispersion
is normal but very close to zerofD<−2 sps/nmd /kmg . The
main attention is focused on the amount of energy carried by
pulses at each round trip[denoted asQ in simulations,Q
=e−`

` ucsz,tdu2dt].
We record the output intensity from the 10% fiber output

coupler with a fast InGaAs photodiode that is connected to a
500-MHz digital phosphor oscilloscope. At a pumping power
of around 150 mW, fundamental mode locking is routinely
achieved and can be stable for hours without the use of any
external feedback. Due to the frequency chirping, the pulse
duration is typically 1 ps at the open-air section outputs, and
150 fs at the compressed output port(see Ref.[14]). Intrac-
avity energy of a single pulse is around 400 pJ. In a stable
regime of laser operation, monitoring the output intensity
displays the amplitude peaks that repeat at the cavity funda-
mental frequency of 36.6 MHz. The oscillogram for this re-
gime is shown in Fig. 3.

IV. SHORT PERIOD PULSATIONS

We call “short period pulsations” those whose period is
comparable with the round-trip time. When this period coin-
cides with the round-trip time, the laser is in the stable re-
gime of pulse generation, i.e., it produces exactly the same
pulse each round trip. This regime is illustrated in Fig. 4(a).
It shows the soliton peak amplitude versus the energyQ of
the pulse as it evolves one round trip inside the cavity. After
each round trip the trajectory returns exactly to the initial
point. The parameters of the simulation are written inside the
figure.

The curve is a closed single loop that shows that soliton
parameters change periodically repeating themselves after
each round trip. The experimental equivalent of this dynam-
ics is presented in Fig. 3. For any arbitrary initial soliton
parameters, the trajectory is out of this loop but it converges
to it in a number of round trips. Hence, the loop is a stable
limit cycle according to the common terminology used in
nonlinear dynamics theory. As in the rest of this paper, any
transitory evolution needed to reach the solution from arbi-
trary initial conditions is removed from the plot in Fig. 4.

FIG. 3. Stable pulse train generation by the mode-locked fiber
laser with a single soliton in each round trip.

FIG. 4. Peak amplitude vs energyQ for (a) a
period-1 solution as it evolves one round trip in-
side the cavity. The vertical part of this trajectory
corresponds to the propagation during the purely
dispersive stage.(b) Period doubled loop in pass-
ing the laser cavity twice.
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A similar loop can be constructed, if we choose any other
soliton parameters, i.e., the width,Nth order momentum of
the pulse, etc. For any two of those parameters we obtain a
two-dimensional projection of the limit cycle. If we use all of
those parameters and construct a trajectory in the resulting
infinite-dimensional space, we will have a periodic loop
again. Hence, this is a limit cycle in an infinite-dimensional
phase space.

The parameters of the system define the period of the
pulsations. In particular, we can find the period being equal
to two round-trip times rather than one. One of these cases is
shown in Fig. 4(b). The parameters of our model that causes
such transformation are shown in the figure. As a rule, the
period-1 pulsations become unstable but the cycle with two
loops becomes stable instead. This phenomenon is known as
period doubling bifurcation.

In the example shown in Fig. 4, we changed several pa-
rameters in order to obtain period doubling. In many cases,
we can vary only one of the parameters in the system to have
a bifurcation or even a sequence of bifurcations. If we
choose the gain saturationm as a variable parameter we can
also observe period quadrupling, i.e., the pulse repeats itself
only after four round trips. In this case, both period-1 and
period-2 solutions become unstable. The diagram showing

the sequence of period doubling bifurcations is presented in
Fig. 5. Period 4 appears at the value ofm<−0.093. Further
change ofm gives period-8 solutions and chaotic evolution
of pulses at aroundm=−0.092. The whole sequence of pe-
riod doubling bifurcations exists but cannot be resolved in
the scale of Fig. 5. Similar evolution can be observed when
we continuously change one of the other system parameters.

Another example of periodic behavior is shown in Fig.
6(a). It corresponds to a pulsating soliton evolution whose
period covers three cavity round-trip times. The pulse energy
versus the number of round trips is shown in the inset of Fig.
7. Each figure shows strict periodicity with the period being
equal to three round trips.

After performing many numerical simulations, we are
convinced that it is possible to find pulsating behavior with
any integer numberN of round trips. This requires a careful
search for the values of the system parameters. Depending on
the choice of the parameter that we use as a variable, the
solutions might appear as a sequence of bifurcations such as
period doubling bifurcations or we can get a more compli-
cated sequence. In particular, the diagram with the period
tripling bifurcation is shown in Fig. 7. In this case, when
changing the spectral filtering parameterb, we have a tran-
sition directly to the period-3 solution rather than to period 2

FIG. 5. Output energyQ monitored at the end of the amplifying
stage as a function ofm. It shows a sequence of period doubling
bifurcations in our parameter managed model of a fiber laser. The
laser parameters are shown in the figure.

FIG. 6. (a) Period tripling loop obtained in
passing the laser cavity three times.(b) Period-3
loop with an additional “long period” modulation
in multiple passes through the laser cavity. The
values of the parameters of the two simulations
are shown in the insets.

FIG. 7. Period tripling bifurcation when changing the parameter
b. (Inset) Pulse energy versus the number of round trips for the
period-3 solution atb=0.25(indicated by a dashed line in the main
figure). The parameters of the simulations, other thanb, are shown
in the inset in Fig. 6(a).
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at the bifurcation point. The bifurcation occurs atb<0.288.
When further reducing the parameterb, we obtain the tran-
sition to the period-6 solution. Further reduction inb leads to
chaotic solutions after a series of bifurcations with period
multiplication.

The form of the bifurcation diagram depends on the tra-
jectory in the parameter space that we choose for our simu-
lations. In the two cases presented above, we fixed all the
parameters except one,m or b. This is the easiest way to
change parameters in the simulations. Experimentally,
changing the configuration might cause a simultaneous varia-
tion of several parameters. Then, the trajectory in the param-
eter space can be more complicated. Each route creates a
specific bifurcation diagram.

Experimental observations

Once mode locking is achieved at a given pumping power
and a given setting of waveplates, we have some latitude to
vary one or several cavity parameters to observe changes in
the dynamics of the output pulses. The change of the pump
power and the orientation of the waveplates influences the
coefficientsd, e, andm, leavingb and n unchanged. How-
ever, the pump power variations influence these parameters
in proportions different from the way when we change the
orientation of the waveplates. As a result, the effects intro-
duced in these two cases are different.

In the frame of the present paper, comparisons with theory
and numerical simulations are consistent when only a single
pulse is circulating in the cavity. For two or more pulses, we
have to modify our model and take into account the gain
saturation dependent on the total energy generated by the
laser [15]. This is not done in the present work. We know
from previous work[13,14] that multiple pulsing and the
formation of multisoliton complexes can be favored in the
cavity when the intracavity energy is increased. Multiple
pulsing can be seen as a possible way of restoring the energy
balance in the cavity and stabilizing the laser operation.

The change of the mode of the laser operation with in-
creasing pump power is shown in Fig. 8. When the pumping
power is increased to 140 mW, period-2 oscillations appear.
These exist at higher power levels. However, at
P=200 mW, instead of having more complex patterns of

oscillations and chaos, a doublet soliton is formed, and
period-2 oscillations disappear.

The newly formed state can be analyzed using the record-
ings of its optical spectrum and autocorrelation trace. The
stable soliton pair, or doublet, is characterized by highly con-
trasted fringes in its spectrum, whose interfringe distances
are inversely proportional to the temporal separation of the
two pulses, as measured by the autocorrelation trace.

Figure 9 presents the spectrum and, in the inset, the auto-
correlation trace, of the doublet state. Further increase of the
pumping power above 230 mW leads to another period-2
bifurcation. At higher power levels we observe the creation
of an additional third pulse, namely, a stable multisoliton
triplet is formed at aroundP<300 mW. The spectrum of the
triplet shows a characteristic fine fringe pattern(see Fig. 10).
The autocorrelation function has five peaks rather than three
(see the inset in Fig. 10).

The increase of the intracavity energy brings the instabili-
ties described above. However, large instabilities are pre-
vented by sharing the intracavity energy between several
pulses that are bound together[17]. This observation of sta-
bilization through additional pulse formation was also re-
cently reported in Ref.[6], where a recursive simple model
was given to explain that dynamic behavior.

In order to observe more complex dynamics associated
with the circulation of a single pulse in the cavity, we have
the latitude to vary different cavity settings. Indeed, once
stable single pulse mode locking is obtained, we can vary the
orientation of the mode-locking waveplates. This operation
results in the modification of the whole nonlinear transmis-
sion function of the open-air section. This is different from

FIG. 8. Bifurcation diagram showing the formation of doublet
and triplet multisoliton states in addition to period doubling(at
P<140 mW andP<240 mWd.

FIG. 9. Spectrum of soliton pair. The inset shows the optical
autocorrelation function of the soliton pair.

FIG. 10. The spectrum of soliton triplet. The inset shows the
optical autocorrelation function of the soliton triplet.
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the numerical simulations where a single parameter is varied
at a time. In the experiment, we can also tune the amount of
losses which is related to the orientation of the half wave-
plate preceding polarizerP2. Starting from a stable
(period-1) single pulse and the amount of 20% loss due to
the variable output coupler, we reduce that amount and ob-
serve the sequence of period-2 and period-4 bifurcations that
is represented in Fig. 11. The bifurcation points are clearly
resolved at transmission values of around 0.9 and 0.97. We
can see from this example that tuning the amount of losses is
not equivalent to tuning the pumping power, as the dynamics
involved can be quite different.

Dynamics with periods different from 2 and 4 can also be
observed. Period-3 pulsations are one of the easily observed
dynamics. Figure 12 shows an example of period-6 pulsa-
tions that appears in the sequence with the period tripling
bifurcation. This observation is a qualitative analog of the
solutions obtained for the values ofb in the interval
[<0.184, 0.196] in Fig. 7.

V. LONG PERIOD PULSATIONS

We call “long period pulsations” those pulsating solutions
that have a period much longer than the round-trip time. As a
rule, the period in this case is not an integer of the round-trip

time although it can become commensurate to it with a care-
ful adjustment of the system parameters. There are many
types of long period pulsations. One example of such pulsa-
tions is shown in Fig. 13. The pulse is asymmetric at any
particular value ofz. As a result, it moves with a velocity that
changes over a period. In addition, the pulse changes its pro-
file continuously, which is also far from having a simple bell
shape. It splits into two and rejoins again. In spite of such a
complicated behavior, on average, the pulse keeps the same
position int. The total period of pulsations in this example is
N<38. The pulse changes its symmetry relative to the trans-
formation t→−t after approximately 19 round trips. As a
consequence, the energyQ plotted versus the number of
round trips(see the right hand inset) shows the periodicity
being<19.

The variety of possible pulsating solutions is enormous.
We observed a multiplicity of such solutions in various re-
gions of the parameter space. In this article, we restrict our-
selves only to one particular example shown in Fig. 13. A
complete study of the major properties of such solutions
would require a separate publication. The pulse can change
periodically its profile, chirp, and group velocity and oscil-
late back and forth relative to its average position in the
moving frame of reference. We were able to reproduce all
types of pulsating solutions that were obtained earlier in the
continuous model[10,16]. That includes examples of “creep-
ing” and “double creeping” solitons, etc. The period of pul-
sations that we observed in numerical simulations varied up
to a few hundred round trips. The pulse energy modulation
can also be changed in a wide range reaching the values of
up to 60%.

It would be hard to observe all the features of the pulse
transformation inz experimentally. The spectra and autocor-
relation techniques are usually applied to the case of station-
ary pulses. When the pulse changes its parameters, its accu-
rate characterization becomes a very difficult task. However,
we can see the periodic changes of the pulse energy in the

FIG. 11. Experimental bifurcation diagram revealing period-2
and period-4 dynamics.

FIG. 12. Period-6 pulsations(experiment).

FIG. 13. An example of long period(<38 round trips) pulsa-
tions. The lower part shows the evolution of the pulse profile. Pulse
profiles atN=1, 20, and 39 are plotted in thicker lines for the sake
of comparison. The upper left inset shows the simulation param-
eters and the upper right one the pulse energy versus the round-trip
number.
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oscilloscope traces and these show undoubtedly that long
period pulsations exist indeed.

Experimental observations

In order to observe long period pulsations in the experi-
ment, we shift one of the four waveplates used to obtain
mode locking. It affects the whole nonlinear loss function in
the cavity. This way we can maintain single pulse mode
locking, while achieving significant pulse changes from one
round trip to the next. These changes are generally periodic.
It turns out that rotating the mode-locking waveplates may
result in the dramatic change from one type of periodic re-
gime to another.

When the laser output features such amplitude modula-
tions, no additional pulses are formed in the cavity and we
are always dealing with a single pulse. Changing the param-
eters around the regime of stable mode locking(single pulse
period 1), we obtain long period modulation of the output
pulse energy. After entering this regime, the increase of the
soliton energy modulation can be achieved either by increas-
ing the pumping power or by a subsequent tuning of the
mode-locking waveplates. When the soliton energy modula-
tion is small, it appears as a sinusoidal modulation. This is
illustrated by the recording in Fig. 14(a), which reveals
period-26 pulsations. In the majority of the experimental ar-

rangements, larger soliton energy modulations correspond to
longer periods.

When the soliton energy modulation is high, it reveals
more complicated nonsinusoidal evolution. This is illustrated
by the oscillogram in Fig. 14(b). These results are in quali-
tative agreement with numerical simulations that show com-
plicated but periodic behavior. Much longer periods, of the
order of 1000 and longer, have been achieved in our experi-
ments. Two examples are shown in Figs. 15(a) and 15(b).
Comparing the two figures, we can see the transition from
almost sinusoidal modulation to a modulation with more
complicated structure.

Very large soliton energy modulations lead to the com-
plete disruption of the single pulse mode-locking regime.
Either the laser enters a multipulse regime of generation, or
pulses in each round trip become so unstable that mode-
locking stops and the laser enters a quasi-cw noisy regime of
operation. However, the range of parameters where periodi-
cally modulated pulse generation exists is very large and
comparable to the range where we have stable pulse genera-
tion.

VI. DOUBLE PERIODIC SOLITON PULSATIONS

Pulsations become complicated when two periods of os-
cillation are involved in the dynamics. A large variety of

FIG. 14. Two examples of long period pulsations.(a) Pulsations
with small soliton energy modulation and with the period<26
round trips.(b) Pulsations with a larger soliton energy modulation
(the period<32 round trips).

FIG. 15. Two examples of long period pulsations.(a) The period
is around 815 round trips and(b) the period is around 910 round
trips.
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such solutions can be found numerically. Here, we consider
only the simplest cases. Figure 16 is an example of one of
the possible bifurcation diagrams leading to double periodic
pulsations. It shows the values of the output energyQ as a
function of e. For a given set of parameters shown in the
lower inset of this figure, the solution is stable ate.1.332.
The system generates the same soliton in each round trip. A
bifurcation from stable single period operation to the period
doubled solution occurs at arounde<1.332. Period-2 solu-
tion exists below this value all the way down toe=1.25.
There are two other bifurcations ate<1.292 ande<1.33,
limiting a wide area of seemingly chaotic solution, where a
diversity of Q values can be obtained rather than two fixed
amounts. In fact, in this last region we have a quasiperiodic
soliton evolution with two incommensurate periods.

The soliton energy versus the round-trip number for one
of these solutions is shown in the upper inset of Fig. 16 by
the thick vertical lines. This plot shows clearly the double
periodic nature of the solution. After each round trip theQ
value jumps from a low(high) value to a high(low) value as
it should for period-2 solutions. In addition, the upper and
the lowerQ values oscillate with a longer period(approxi-
mately 18 round trips). The longer period is not exactly a
multiple of the round trip time thus creating in Fig. 16 the
region of seemingly chaotic motion. The additional period
and the amplitude of pulsations vary in the interval between
the two bifurcations.

The form of the bifurcation diagram depends on the path
in the parameter space that we choose for the simulations. In
the case presented in Fig. 16, we fixed all the parameters
except one,e. This is one of the easiest ways to change
parameters. We can also change two or more parameters si-
multaneously. Each route creates a specific bifurcation dia-
gram.

Any imaginable combination of long and short periods in
the dynamics can be realized with a proper choice of the

system parameters. New periods appear and disappear at bi-
furcation points similar to those in Fig. 16. Figure 17 shows
another example of bifurcation diagram. This shows a bifur-
cation from single period to the short period-3 solution;
namely, period 1 can be seen clearly in the region below
D<−1.32 and theperiod-3 solution exists in the interval
−1.05,D,−0.92. In between these two regimes, we can
see a wide area of soliton evolution with a continuous
range of output energiesQ. This area corresponds to the
quasiperiodic soliton evolution with two incommensurate
periods involved in its dynamics. In order to show this we
plot in Fig. 18 the soliton energy versus the number of
round trips. Each successive pulse is shown by a thick
vertical line. This plot shows clearly the double periodic
nature of the solution. The line connecting every third
point in this plot has a periodicity of around 100 round
trips. This longer period is not exactly a multiple of the
round-trip time, thus creating in Fig. 17 the region with a
continuous range of energies.

The double periodicity is additionally illustrated in Fig.
6(b). This plot is calculated for a different set of parameters
but has the same properties: pulsations occur with the com-

FIG. 16. The total soliton energyQ versuse. The lower inset
gives the values of other parameters used for the simulations. This
diagram shows the period doubling bifurcation ate<1.332. Bifur-
cations leading to additional long period pulsations occur at
e<1.33 ande<1.292. Theupper inset showsQ versus round-
trip time for the period-2 solution with additional long period
pulsations. The value ofe chosen for this case is 1.31sshown by
the arrowd.

FIG. 17. Bifurcation diagram showing the period tripling bifur-
cation with additional long period pulsations. The parameters of the
simulation are shown in the plot. The vertical line marks the case
shown in Fig. 18.

FIG. 18. Period-3 solution with long period soliton pulsations.
The parameters of this simulation are the same as in Fig. 17.
D=−1.3.
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bination of a period-3 and a long period modulation. The
triple limit cycle that is similar to the one shown in Fig. 6(a)
is shifted each round trip by a small amount defined by the
longer period of pulsations. The final result is this “attractor”
which fills the triangular “donut.” We stress that the motion
is quasiperiodic rather than chaotic in this case.

The new long periods are generally incommensurate with
the existing short ones. However, at some range of param-
eters, the “synchronization” of the two frequencies might
happen. Then, a period which is an integer multiple of 3 can
be observed. An example of such synchronization can be
seen in Fig. 17 in a small window in the region −1.2,D
,−1.19. The soliton energy takes discrete values rather than
an arbitrary amount from the continuous range. This can be
seen clearly if we plot the same figure with a higher resolu-
tion (see Fig. 19). When more than two frequencies are in-
volved in the pulsations, the sequence of bifurcations can be
quite complicated.

To illustrate further the fact that almost any combination
of frequencies is possible in pulsations, we give, in Fig. 20,
one more example obtained in our numerical simulations.
The plot shows a bifurcation diagram from a period-1 solu-

tion to a period-4 solution through the combination of a
period-4 and a long period pulsation in the same quasiperi-
odic dynamics. For the values ofD below 22.09 the system
is in stationary and stable regime producing exactly the same
pulse in each round trip. At the values ofD in the interval
<−1.93,D, <−1.52 the laser produces a period-4 soliton
train. The soliton energy versus round-trip time for a particu-
lar caseD=−1.8 is shown in the inset to Fig. 20.

In the intermediate range ofD values, the new period
appears in addition to the period 4. The two periods are
generally incommensurate thus producing the transition re-
gion s<−2.09,D, <−1.93d in the bifurcation diagram in
Fig. 20. The pulse energy versus the round-trip number for a
particular value ofD in this region (namely, D=−2.0) is
shown in Fig. 21. The long period pulsations in this example
is <80. It is remarkable that the transition from period 1 to
period 4 does not feature period-2 pulsations as it would
happen in the sequence of period doubling bifurcations. This

FIG. 19. Part of the bifurcation diagram in Fig. 17 that shows
“synchronization.”

FIG. 20. Bifurcation diagram for the period-4 solution. The inset
in the center showsQ versus round-trip number for the period-4
solution atD=−1.8. The two boxes at the left upper corner give the
parameters of the simulations.

FIG. 21. Period-4 solution with long period pulsations. The pa-
rameters of the simulation are the same as in Fig. 20 with
D=−2.0 sindicated by the left hand dashed lined.

FIG. 22. Experimental oscillogram showing the sequence of la-
ser output pulses with period doubling and long periods<32d
pulsations.
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example shows that the sequence of bifurcations can be
much more involved and depends strongly of the choice of
parameters that we fix in simulations.

Experimental observation

Not every dynamics obtained numerically can be easily
observed in the experiment. This is related to the fact that
some external parameters of the laser system cannot be
changed continuously. As a result, some of the regions of
parameters cannot be reached in the fixed arrangement of the
present setup. Nevertheless, we were successful in observing
at least some of the double periodic motions.

For example, using the same procedure as above, we ob-
served period doubling with an additional pulse energy
modulation. This experimental result is presented in Fig. 22.
Here the same pattern is repeated every<32 round trips.
These long period pulsations exist on the top of the period
doubling modulation and generally are incommensurate with
period 2. Changing the cavity parameters, we can obtain
similar results for the pulse energy modulation with other
frequencies combined in the same dynamics. In principle, we
can obtain any combination of short and long periods in the
pulse energy pulsations.

VII. DISCUSSION

A passively mode-locked fiber laser is a highly nonlinear
dissipative system. Moreover, it is a system that has an infi-
nite number of degrees of freedom. As such, it can reveal a
variety of interesting dynamics. In particular, the device can
serve as a playground for observing nontrivial nonlinear re-
gimes of soliton generation. In some cases, the behavior of
these systems has a counterpart in the realm of finite-
dimensional systems although there is never a complete cor-
respondence. Some nonlinear phenomena observed in these
systems are completely different. To give an example, ex-
ploding solitons[10] can be observed only in dissipative
systems with an infinite number of degrees of freedom. We
have also found that solitons can have chaotic evolution and
serve as strange attractors[18].

The pulsating behavior of solitons in dissipative systems
is one of the remarkable features that we were able to both
predict and observe experimentally. The pulsations are
infinite-dimensional analogs of limit cycles. Previous nu-
merical results[10,16] related to soliton pulsations were
based on a continuous model which is not always adequate
in describing the experimental situation. The explicit intro-

duction of the periodicity in the pulse propagation related to
the cavity round-trip time improves the model significantly
and makes it closer to the real laser. This improvement al-
lowed us to find both short and long period soliton pulsations
in the laser cavity as well as quasiperiodic pulsations with
combined frequencies. The latter are examples of more com-
plicated limit cycles.

Surely, the limited number of examples of quasiperiodic
motions with two periods in pulsations that we presented in
this work do not represent the whole complexity of possible
dynamics. Our present study is only the first step in this
direction. We can find cases that have three and more periods
in the pulsations. Any number of frequencies can be involved
in the dynamics. In particular, chaotic pulsations are ex-
amples with multiple frequencies. All these complicated phe-
nomena require a more careful study.

An important aspect of the problem is how accurately the
model describes an experiment and can it predict new fea-
tures of pulse generation. In general, comparison of experi-
mental results with simulations is not easy. In most of the
cases these comparisons are qualitative rather than quantita-
tive. In this work we made further improvements in laser
modeling and used parameter management in order to de-
scribe features of soliton generation that are specifically re-
lated to the periodicity of the pulse propagation in the laser
cavity. This improvement allowed us to describe single and
double periodicity in the soliton pulsations.

Last but not least, the additional frequencies can define
additional clock speeds in optical devices. If they are syn-
chronized with the round-trip time, these can be quite accu-
rate. We believe that our results can find a variety of practical
applications in photonics and optical communications.

VIII. CONCLUSIONS

In conclusion, we observed, both numerically and experi-
mentally, single and double periodic pulsations of solitons
generated by a passively mode-locked fiber laser. Additional
periods in the laser dynamics appear as bifurcations at cer-
tain values of the system parameters.
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